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Tip behaviour for cracks in bonded inhomogeneous materials 
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Abstract. Consider two isotropic elastic half-spaces, welded together with a pressurized crack meeting the weld 
perpendicularly. A method is developed for determining the asymptotic behaviour of the crack-opening displacement 
near the tips of the crack. Two problems are considered in detail. In the first, the half-spaces are composed of different 
homogeneous materials. In the second, the uncracked half-space is inhomogeneous, with a shear modulus that varies 
exponentially. Each problem is reduced to a hypersingular integral equation, which is then subjected to a Mellin 
transform. Extensions of the method to other materials and configurations are suggested. 

1. Introduction 

Consider two isotropic elastic half-spaces, He and H a ,  bonded together. We choose cartesian 
coordinates x ,  y ,  so that Hc and Hu correspond to the half-planes x > 0 and x < 0,  
respectively, and x = 0 is the welded interface between He and Hu.  Let  us suppose that 
there is a crack F extending perpendicularly f rom the interface into H¢; thus, Hc is the 
cracked half-space and Ha is the uncracked half-space. Choose the origin so that the crack 
occupies the line segment  

F : 0 < x < a ,  y - - 0 ,  

where a is the length of the crack. Let  He have shear modulus IX and Poisson's ratio u ,  
and let Hu have shear modulus Ixu and Poisson's ratio Uu. We always assume that IX and 
u are constants. 

We consider a plane-strain deformat ion caused by a prescribed loading, which is assumed 
to be symmetric  about  the x-axis;  thus, we suppose that 

IX p(x) ,  0 < x < a ,  "fyy(X, O) - -  1 - u 

where rij is the stress tensor and p(x)  is (proport ional  to) the prescribed pressure opening 
the crack. We are interested in determining the shape of the crack near  the tip at x = 0.  
This is related to the stress-intensity factor at the tip. 

We consider two problems in detail. In the first (§5), Hu is homogeneous.  The crack- 
opening displacement,  f ( x ) ,  is shown to have an expansion in powers of  x ;  in general, the 
exponents  are neither integers n nor n + ½. The corresponding result for the stress field near  
the tip at x = 0 is well known (see §5 for references); the leading te rm is proport ional  to 
r ~ , where - 1  < a < 0 and r is the distance f rom the crack tip. This contrasts with the 
more  common  inverse square-root  behaviour,  as for a crack in a homogeneous  material.  A 
consequence of this unusual behaviour  is that the standard techniques of dynamic fracture 
mechanics for propagat ing cracks [1] are not applicable. 

One  can argue that, in reality, the material  parameters  (shear modulus and Poisson's ratio) 
should be continuous across an interface, although they may vary rapidly within an interfacial 
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zone. Recently, Erdogan et al. [2] have modelled this situation by supposing that /Zu(X) = ~e  rx 
and Vu = v ,  where 3' is a constant. They found an inverse square-root behaviour near the 
tip. We study this problem in §6. We confirm the square-root behaviour and go on to find the 
next term in the expansion of f(x) ; it involves log x .  Such terms do not (usually) arise for 
homogeneous materials, and are a consequence of the discontinuous derivative of the shear 
modulus at the interface, x = 0.  

For each problem, we obtain a hypersingular integral equation for f (x) ,  which we analyse 
using Mellin transforms, extending the method described in [3]. Thus, we start with mini- 
mal assumptions on f(x)  and then deduce its asymptotic expansion for small x from the 
governing integral equation. We remark that Mellin transforms are routinely used for stress- 
singularity problems in wedges [4, 5]; here, we are interested in more detail (beyond the 
leading-order contribution) and in the connection between the prescribed loading and the 
crack-tip behaviour. 

2. A crack in an unbounded, homogeneous solid 

Consider an unbounded,  homogeneous,  isotropic, elastic solid, for which we have /Xu -- /x 
and uu = v .  The deformation around a pressurized crack F in such a solid can be determined 
by solving a simple hypersingular integral equation, namely 

1 fo a f(t) (2.1) ( x ~ t ) 2  dt -- p(x), 0 < x < a, 

where f(x)  is the unknown discontinuity in the normal component  of the displacement across 
the crack at x .  The integral must be interpreted as a finite-part integral, 

f0 lim dt + f ~ ~ x }  
a f(t)  ~ [ x - ,  f(t)  f(t)  2 ) 

(X~7)2 d t  = - -  ,-~0 t J0 (x - 0 2 +~ (x  - -  7) 2 dt • (2.2) 

here, 0 < x < a and f(x)  is required to have a HSlder-continuous derivative, f c C 1'~ . The 
finite-part integral (2.2) is related to a Cauchy principal-value integral by 

~a f(t) d L ~ f(t) dt. (2.3) (X~7)2 d t  - -  dx x -  t 

The integral equation (2.1) was derived by Ioakimidis [6]. It is also seen to be equivalent to 
Bueckner's equation [7, p. 268], if one uses (2.3). Its general solution is [8] 

La ( ) f(x)  = 2 p(t) log alx - tl dt+ (2.4) 
a(x * t) - 2xt - ~ x t ( a  - x)(a - t) ~ '  

where A and B are two arbitrary constants, assuming that p is smooth for 0 < x < a ; p is 
allowed to have integrable singularities at the two tips. In order  to obtain a unique solution, 
we impose two supplementary conditions on f ;  these are 

f (0)  = 0 and f(a) = 0. (2.5) 

If we impose these edge conditions on f ,  we must take A = B = 0 in (2.4). 
For  sufficiently well-behaved loadings p ,  we expect that the asymptotic behaviour of f(x) 

near the end-points x = 0 and x = a is given by 

f(x)  ,.~ f l v ~  as x ---+ 0+, (2.6) 

and 
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f ( x )  ,,~ gl x/a - x as x -~ a - ,  (2.7) 

where fl  and gl are constants. In fact, if we restrict p to be square-integrable, rather than 
merely integrable, we can extract the behaviour of f ( x )  as x ~ 0 from (2.4): it is given by 
(2.6), with 

f l  = 4 foaV/-a--t - ~ ~c~ p(t) dr; 

this is a well known formula [9, p. 90]. A similar formula holds for gl • Note that the edge 
behaviour is not  given by (2.6) if p is not  square-integrable [10, §29]. 

It is possible to obtain the complete asymptotic expansion of f ( x )  as x ~ 0. One way of 
doing this is to use the Mellin transform; see §4. This method is described in detail for (2.1) 
in [3]; the result is 

f(x) "-' Z f n x  n-1/2 as  x ~ O. (2.8) 
n=l 

3. Dissimilar half-spaces 

In this section, we describe two problems, corresponding to two different materials in the 
uncracked half-space Hu.  In the first, we suppose that Hu is composed of a homogeneous 
material, which differs from that in He.  In the second, we suppose that the material in Hu 
is inhomogeneous,  so that its shear modulus ~u varies exponentially with x .  

3.1. Two h o m o g e n e o u s  half-spaces 

Suppose that /Xu and Vu are constants (as well as /x and v ). The associated problem for 
a pressurized crack F has been studied by several authors. It was solved exactly in 1968 
by Khrapkov [11] and by Kuang and Mura [12]. They reduced the problem to a singular 
integral equation, which they solved using Mellin transforms and the Wiener-Hopf technique; 
the result is rather complicated. Numerical solutions of the singular integral equation have 
been obtained by Atkinson [13] and by Cook and Erdogan [14]. This integral equation can be 
written as 

1 f 0 a {  1 + H ( x , t ) } F ( t ) d t = p ( x ) ,  0 < x < a ,  (3.1) 
27r t - x  

where 

A 6 B x  4 B x  2 
H ( x , t )  = - -  + - -  x+t ( X + t )  2 ( x + t )  3 '  

A = 4(Vu - m~,)(m' - 2m(1 - v)) - 3m '2 

{4(1 - Vu) - m ' } { 4 m ( 1  - v)  + m ' }  ' 

m'  lZu m'  B =  m = - -  and = l - m .  
4m(1 - v )  + m "  I~ 

The integral equation (3.1) is to be solved for F subject to 

fO a F ( t )  at  = o. 
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The function F is related to the crack-opening displacement f by 

// f ( x )  = - F ( t )  d t ;  

thus, f '  = F and f satisfies (2.5). An integration by parts converts (3.1) into a hypersingular 
integral equation for f ,  namely 

l~0a ( 1 } (x - t) 2 + L(x ,  t) f ( t )  at  = p(x),  0 < x < a, (3.2) 

where 

OH A 12Bxt  
L (x ,  t) -- O----t - (x + t) --------~ + (x + t) ~ (3.3) 

Two special cases are of note. First, if /~u = / x ,  we have m = 1, m' = 0,  

A- V-Vu and B=O; 
2(1 - Vu) 

in particular, if we also have Vu = v, then A = 0 and (3.2) reduces to (2.1). 
Second, if IZu = 0, we have m = 0, m' = 1, 

A=-I and B=I. 

In this case, (3.2) reduces to the appropriate integral equation for an edge crack in the stress- 
free surface of an elastic half-space [15], [3, §§2.4, 3.3]. 

3.2. One inhomogeneous  half-space 

Suppose that the two half-spaces have the same (constant) Poisson's ratio, 

1.,u ~ b ' .  

Suppose further that t~u is given by 

/zu(x) = / z e  rx, (3.4) 

where 3' is a constant; thus, the shear modulus is continuous across the interface, x = 0.  
Erdogan et al. [2] have solved the associated problem for a crack F by reducing it to the 
singular integral equation (3.1), where now 

f H ( x , t ) =  h ( k , x , t ) e  k(x+t) dk,  

h (k ,  x,  t) -- hi (k) + xhz (k )  + th3(k) + x th4(k) ,  

and the four functions hj ( j = 1,2, 3, 4 ) are known algebraic functions of k ; see Appendix A. 
As in §3.1, we integrate by parts to obtain (3.2), where now 

L(x ,  t) = g(k ,  x, t) e -k(x+t) dk,  (3.5) 

g ( k , x ,  t) -- g l (k )  + xg2(k)  + tg3(k) + xtg4(k) ,  

and the four functions gj ( j  = 1,2, 3, 4 ) are given by 

gl = khl  - h3, g2 -- kh2 - ha, g3 = kh3 and g4 = kh4. 



4. Use of Mellin transforms 

The Mellin transform is defined by 

- f ( z )  = f ( x ) x  z-1 d x .  

In the sequel, we always use the notation 

z = o -+ i r  

for the transform variable z .  
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(4.1) 

(4.3) 

(4.4) 

--Re(aM+l) < C' < --Re(aM) 

for some M ,  we have 

M N(m) 
f (x )  = ~ ~ Am.x am (log x) n + RM (X), 

m = 0  n = 0  

where 

x -e  f(c'  + i t ) x - "  dr.  RM(X) = ~ co 

The remainder RM(X ) is o(x Re(aM)) if, for example, 

f ~  + ir)l < oc, If(c' d r  
oo 

whence (4.3) is an asymptotic approximation. 

The inverse Mellin transform is given by 

Suppose that f ( x )  is defined (as the solution of an integral equation) for 0 < x < a and 
satisfies f(0) -- f (a)  -- 0. Let us define 

f ( x ) = O  for x > a ,  

whence )7(z) exists and is analytic in or > 0; within this right-hand plane, 

If(o- + ir)l ---* 0 as I~-I ---* ~ .  (4.2) 

jT(z) can be analytically continued into the left-hand plane o- < 0, apart from poles. The 
location and strength of these poles determine the behaviour of f (x )  for small x .  More 
precisely, we have the following result [16, p. 7]. 

T H E O R E M  1. Suppose that f ( z )  is analytic in a left-hand plane, o" < c, apart from poles at 
z = - - a m ,  m = 0, 1 , 2 , . . . ,  where Re(a0) < Re(a1) < . . . ;  let the principal part of  the Laurent 

expansion of  f ( z )  about z = - a m  be given by 

N(m)  (_ l )nn  ! 
)--:~ Zmn (z + am)n+l ' 
n = 0  

where N(m)  is finite. Assume that (4.2) holds for c' <_ o" < c. Then, if c' can be chosen so 
that 
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1 cf_ii~f(z)x_Zdz. 
f ( x )  = ~ i  

The expansion (4.3) is obtained by moving the inversion contour to the left; each term arises 

as a residue contribution from an appropriate pole in the analytic continuation of f ( z ) .  
There  are similar theorems relating the behaviour of a function p(x)  for large x with 

the properties of its Mellin transform p(z)  in a right-hand plane. We shall make use of the 
following result. 

T H E O R E M  2. Suppose that 

p(x)  ~ A x  ~ as x ~ O 

and 

p(x)  ~ Bx  -tJ as x ~ cx~, 

where A and B are complex constants, and ot and /3 are real constants with - a  </3 .  Then, 
p(z)  is analytic for - a  < ~ < /3. Moreover, its analytic continuation into cr < - a  has a 
simple pole at z = - a  with residue A ,  and its analytic continuation into or >_/3 has a simple 
pole at z =/3 with residue - B .  

5. Two homogeneous half-spaces: tip behaviour 

Consider the integral equation (3.2), with L defined by (3.3). The function p(x)  is given for 
0 < x < a .  For simplicity, assume that 

p(x)  = ~-~pnx n for small x ;  (5.1) 
n=0  

other  expansions will be considered later. Define p(x)  for x > a by the left-hand side of 
(3.2), whence p(x)  = O(x -2) as x ~ ~ .  Thus, p(z)  is analytic for 0 < o- < 2 and can be 
analytically continued into the whole plane apart from poles. In particular, p(z)  has simple 
poles at z = - m  with residue Pro, where m = 0 , 1 , 2 , . . . .  Moreover, 

I f i ( o ' + i r ) l  ~ 0 as  Irl ~ ~ (5 .2 )  

for all values of o-. 
We also know that f (0)  = f (a)  = 0,  whence 

f ( z )  is analytic for or > 0 (5.3) 

and has poles in g < 0. We locate these poles using the integral equation (3.2). 
The left-hand side of (3.2) is a Mellin convolution; in general, we have 

{f0 } All x ~ tOk f ( t )  dt = k ( z  + a ) f ( z  + a + / 3 +  l).  (5.4) 

For (3.2), we have /3 = - 2  and 

1 A 12Bx 
k ( x ) - - -  + - -  + - -  

(X -- 1) 2 (X + 1) 2 (X + 1) 4 

In order  to calculate k ( z ) ,  we note that standard contour-integral methods give 



~0 °c X z - -  dx  = -~r t  z cot  7rz 
X - - t  

and 

fo ~ xZ ,lTt z d x -  
x + t sin ~rz 

Tip behaviour  f o r  cracks 

for  - 1 

f0 (x - 0 2 

f0 cx~ X z 
(x + t) ----------~ 

< o" < 0 and t > 0 ;  di f ferent ia t ion with respect  to t (using (2.3)) then gives 

dx  = - ~ r z t  z-1 cot  7rz for  - 1 < o - < 1 ,  

~rzt z-1 
d x -  

sin 7rz 
for  - 1 < o - < 1  and 

x z+l rrz(1 - z2)t  z-2 
- -  d x  = 
(x + t) 4 6 sin 7rz 

for  - 2 < o r < 2 .  

473 

Hence ,  with a = 1 in (5.4), the Mellin t ransform of  (3.2) is found  to be 

z D ( z ) f ( z ) - - - - - 2 p ( z + l )  for  - 1 < o - < 1 ,  (5.5) 
sin ~'z 

where  

D ( z )  = cos 1rz + 2 B z  2 - (A + 2B).  (5.6) 

We are in teres ted in the zeros  of  D ( z )  ; their proper t ies  are descr ibed in [11] and [12]. I f  z 
is a zero,  then  so are  - z ,  ~ and - ~ .  D ( z )  has an infinite n u m b e r  of  zeros with or < 0 .  
In  particular, for  any  combina t ion  of  materials,  there  is always precisely one  zero  in the strip 
- 1  < or < 0 ,  and this zero  is real; see A p p e n d i x  B. 

If  B = 0 (that is, tz = /~u ), D ( z )  has an infinite n u m b e r  o f  real zeros  and no complex  
zeros. However ,  in general  ( B ~ 0 ), there  is a finite n u m b e r  of  real  zeros,  

z = -t-or r, n = 1 , 2 , . . . N ,  

and an infinite n u m b e r  of  pairs o f  complex  zeros, 

z = +o-~ • i~-~, n =  1 , 2 , . . . ;  

N depends  on the values o f  A and B .  Some of  these zeros  are tabula ted  in [11] and [12]. 
For  example,  suppose  v = ¼ and Vu = 3 ;  f rom [12], we have the fol lowing for  m = ½ 

N = 2, o-~ = 0.4041, o-~ = 1.2218, o-~ = 2.8072, ~-~ = 0.8147, 

whereas  for  m = 3 ,  we have 

N = 1, o-[ = 0.6353, cr~ = 1.8047, ~'~ = 0.2863. 

Re tu rn ing  to (5.5), we have 

f ( z )  = 2/~(z + 1) sin ~rz 
z D ( z )  for  - 1 < o - < 1 ,  z ¢ ± c r ~ .  (5.7) 

No te  tha t  this is not  an explicit fo rmula  for  f ( z ) ,  since fi depends  on 37. Nevertheless ,  it 
can be solved, using the W iene r -H opf  technique  [11, 12]. We p roceed  indirectly, and use (5.7) 
to obtain  in format ion  on f .  In  particular, when  combined  with (5.2), we have 
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f(~r + i t )  = o(r -1) as Irl 

whence (4.2) and (4.4) hold. 
It follows from (5.3) that p(z  + 1) must have zeros at the simple zeros of D(z) in o- _> 0. 

We then see from (5.7) that f(z)  is analytic for o- > -0-  5 . Take the inversion contour along 
or = c ,  with c > -o-  5 . By Theorem 1, we can move this contour to the left, crossing the first 
pole at z = -0-  5 ; this is a simple pole, whence 

f(x)  ,'~ flx'~ as x --~ 0, 

where 

2~(1 - 0-5) sin (~ro'5) 
f l =  

We can continue moving the inversion contour to the left. Not ing tha t  the simple poles of 

/5(z + 1) are removed by the simple zeros of sin ~rz, we see that f(z) has simple poles at 
the simple zeros of D ( z ) ,  whence 

N oo 

f(x) ~ Z f n X  ~ + Z F~x°~" cos (r,~ logx + 6n) 
n = l  n = l  

as x + 0, (5.8) 

where the real quantities Fn and 6n are defined by 

Fneia, = --4fi(Zn + 1) sin ~Zn with Zn = - o ~  - iz~. 
ZnD'(Zn) 

Equation (5.8) gives the complete asymptotic expansion of the crack-opening displacement 
for loadings of the form (5.1). We note that if p(x) involves non-integer powers, these will 
induce additional terms in the expansion of f (x) .  Thus, if p(x) includes a term 

pxa-1 

there will be a corresponding term 

Fx a 

in the expansion of f ( x ) ,  where the coefficient F is given explicitly by 

- 2 P  sin rrA 
F - -  

hD(h)  

This will be the leading contribution if h < (rS, which corresponds to a singular loading, since 
o - 5 < 1 .  

6. One inhomogeneous half-space: tip behaviour 

The governing integral equation is (3.2), namely 

2_ fo a f(t) dt + (Lf)(x) = p(x), 2~" (x - t) 2 

where 

/o ° 
1 L(x, t)f(t) dt (Lf)(x) = 

0 < x < a, (6.1) 
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and L(x,t) is def ined by (3.5). Suppose  that  there  are constants  a and /3 such that  

O(x  ' ' q )  as x ~ O, (6.2) 
(Lf)(x) = O(x -Èq)  as x --+ co. 

Then ,  T h e o r e m  2 implies that  (Lf)(z  + 1) is analytic for  a < o- < / 3  ; its analytic cont inuat ion  
has simple poles at z = a and at z = / 3 .  Now, p roceed ing  as in §5, we define p(x) for  x > a 
by  the lef t -hand side of  (6.1), whence  p(x) = O(x  -.2-1) as x -+ co ,  where  s2 = ra in ( i , /3 ) .  
Since p(x) is def ined by (5.1) for  0 < x < a ,  T h e o r e m  2 implies that  p (z  + 1) is analytic for  
- 1  < o- < s2. Taking the Mellin t rans form of  (6.1) yields 

Z cot  ~Z JT(z) - 2(L"f)(z + 1) = - 2 p ( z  + 1) for  S 1 ( O" ( $2, (6.3) 

where  Sl = m a x ( - 1 ,  a ) .  
Le t  us de te rmine  a and /3. F r o m  (3.5), we have 

1 ~0~ (Lf)(x) = ~ {(;l(k)+x~2(k)} e-kXdk, (6.4) 

where  

Gj = gj(k)f(k) - gj+2(k)f ' (k)  

for  j = 1 ,2 ,  and 

/0 f (k)  = f( t )  e k, dt 

is the Laplace  t ransform of  f (since, by definition, f i t )  = 0 for  t > a ). F r o m  (2.5) 1, we 
know mere ly  that  

f ( x ) = o ( 1 )  as x - -+0 ,  

but  this is sufficient to give [17, p. 134] 

f ( k ) = O ( 1 )  and y ( k ) = O ( 1 )  as k ~ 0 ,  

whereas  Watson 's  l emma [17, p. 103] gives 

7f(k) = o(k -1) and { ( k )  = o (k  -2) as k --, co. (6.5) 

F r o m  the explicit  fo rmulae  for  & (see Append ix  A),  we have 

g l (k)  = O(k), g2(k) = O(k2),  g3(k) = O(k2),  g4(k) = O(k  3) as k --+ 0, 

and 

gl(k) = O(1),  g2(k) = O(k), g3(k) = O(k), g4(k) = O(k  2) as k--+ co. 

H e n c e  

Gl(k) = O(k) and G2(k) = O(k  2) as k--+ 0 (6.6) 

and 

( ; f f k ) = o ( k  -1) and G 2 ( k ) = o ( 1 )  as k - -+co .  (6.7) 

Then ,  since L f  is itself a Laplace  t ransform,  we deduce  that  it behaves  as (6.2), where in  
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o~ : S 1 : - 1  and /3 = s2 = 1. 

Thus, (6.3) gives 

f ( z ) = 2  sinTrz ( L f ) ( z + l ) - / ~ ( z + l )  for - 1 < o - < 1 ,  z ~ ± ½ ,  (6.8) 
Z COS 7rZ 

since cos ~'z has zeros. We then see f rom (5.3) that f (z)  is analytic for or > - ½ ,  so we take 

the inversion contour  along or = c ,  with c > - ½ .  Moving this contour to the left, we cross 

the first pole at z = -½ ; this is a simple pole, whence the edge behaviour  of f is given by 

f ( x ) ~ f l v ~  as x ~ 0 ,  (6.9) 

with 

fl = (4/ ~r){ (Lf)(  ½ ) - ~(1)}. 

Thus, the leading edge-behaviour  of the crack-opening displacement f (x)  is the same as for 
a crack in an unbounded homogeneous  material.  This is the result obtained by Erdogan et 
al. [2]; this paper  also contains numerical results for the stress-intensity factor (proportional  
to fa ) as a function of ya, for v ---- 0.3 and p(x) = P0, a constant. 

6.1. The next term 

Let  us now improve the approximation (6.9). First, using (6.9), we can refine (6.5) to 

? ( k ) ~  ½x/~fl k-3/2 and ? ' ( k ) ~ - 3 x / ~ f l  k-5/2 as k ~ .  

Then,  using the known asymptotics of gj(k) for large k (given in Appendix  A),  we can 
refine (6.7) to 

and ~ 2 ( k )  "~ .-42 k - 1 / 2  a s  k -~ co, (6.10) G1 (k) '~ .Alk -3/2 

where 

.A 1 -- (1 - 2v)Jl. 2 and "A2 - 16(1 - v)" 

Next, since A4{e -kx} = k-ZF(z) , we obtain 

2~r(L~)(z + i) = F(z + I)GI(-Z) + F(z + 2)G(-I - z) (6.11) 

f rom (6.4). Both ~ l ( - z )  and ~2( -1  - z) are analytic for _3  < tr < 1 ; this follows f rom 
(6.6), (6.10) and Theo rem 2. Hence,  (6.8) gives 

f(z) = ! {r(z + 1 ) ~ l ( - Z )  + r(z + 2 ) ~ 2 ( - 1  - z )  - 2 ~ - ~ ( z  + 1 ) }  tan 7rz 
7rZ 

(6.12) 

for o- > _ 3 ,  z ~ -½ ; note that the simple poles of F(z + 1) and p(z  + 1) at the negative 
integers are removed  by corresponding zeros of tan 7rz. 

The right-hand side of (6.12) has a pole at z = - 3  • Near  this pole, 

~ l ( - Z )  ~ .A1 ~ 2 ( - 1  - z )  ~ .A2 and tan 7rz - -  r ~ a  - -  

3 ~ 3 
Z + ~  Z + ~  

- 1  
+ 3) '  

whence z = _3  is a double pole. From (6.12), we have 



I3 = _ 3  
)7(z) ~" (z + 3)2 near z , 

where 

/3 = ~ 2  {A1F(_ 1)+ ,A2F(1)} = (4V24rr(1- 1)3'fl- v)" 

Theorem 1 then gives 

Tip behaviour for  cracks 477 

1 - 4v } 
f ( x )  ,-~ f i x  U2 1+ 24~-(1- v) 3 'xlogx +f2x 3/2 as x ~ O. (6.13) 

It is not surprising that the logarithmic term vanishes when 3' = 0,  for then the two elastic 
half-spaces become identical and homogeneous; see (2.8). Curiously, the logarithmic term also 
vanishes when v = 1. 

7. Discussion 

We have examined the behaviour of the crack-opening displacement f ( x )  for a crack meeting 
the interface between two isotropic elastic half-spaces. More precisely, we have described a 
method for obtaining the exponents in the asymptotic expansion of f ( x )  near a crack tip 
at x = 0. In general, the coefficients in the expansion can only be obtained by solving the 
governing integral equation; this can be done more efficiently by incorporating the known 
crack-tip behaviour of f ( x )  into an appropriate numerical scheme. 

In §5, we considered two different homogeneous half-spaces, and obtained a complete 
expansion of f ( x ) ,  namely (5.8). The character of this expansion is unchanged if the two 
half-spaces have the same Poisson's ratio, u --- Uu • However, if /.t =/Zu (with v ~ Vu ), then 
N -- oc and (5.8) reduces to 

f (x)  ~ F_, f a s  x 0,  

n=l 

which should be compared with the known expansion for a crack in a single unbounded 
homogeneous solid, (2.8). This latter expansion is also obtained if the crack does not meet 
the interface. To see this, suppose that we locate the interface between the two homogeneous 
half-spaces at x = - e ,  with 8 > 0, and take F as before. The corresponding integral 
equation is (3.2), where now 

A 12B(x + s)(t + s) 
L(x,  t) - + 

(x + t +26) 2 (x + t +26) 4 

Proceeding as before, we take the Mellin transform and obtain (6.8), where 

Z f0 a ( L f ) ( z  + 1) - 2 sin ~rz f ( t ) ( t  + 2e)z-3£(t; z, 6) dt (7.1) 

and 

£(t;Z, 6) = A( t  + 26) 2 + 2B(t  + e)(1 - Z){(1 + Z)(t + 26) + 6(2 - Z)}. 

Provided 6 > 0, the integral in (7.1) defines an analytic function of z .  It follows that the 
only contributory poles come from the zeros of cos ~'z in (6.8), and so we obtain (2.8), just 
as for a single unbounded homogeneous solid (although, of course, the coefficients fn will 
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be different). We note that Atkinson [18] has studied the behaviour of the stress field near 
x = 0  as e ~ 0 .  

In §6, we considered a cracked homogeneous half-space bonded to an inhomogeneous 
half-space. We confirmed the result of Erdogan et al. [2] that f ( x )  : O(x/x) as x ~ 0. We 
also obtained the next term, which is proportional to x 3/2 logx .  This arises because of the 
discontinuous derivative of the shear modulus at x = 0; a similar phenomenon is analysed 
in [3, §7.1]. 

Delale and Erdogan [19] have reduced the problem of a pressurized crack in an inhomo- 
geneous solid, in which the shear modulus is /ze rx for all x ,  to a singular integral equation. 
They found the usual square-root behaviour near the crack tips. It should be possible to show 
further that the complete expansion contains on ly  algebraic terms. Note that [19] also includes 
references to related work on cracks in other  types of inhomogeneous materials. 

Finally, we, note that some related problems can be reduced to systems of singular inte- 
gral equations. One example is the problem of §5 in which the crack is not perpendicular 
to the interface [20]. Another  is the problem of §5 in which the two half-spaces are both 
anisotropic [21]. It would be of interest to extend the present method to such problems. 

Appendix A 

The solution cited in §3.2, due to Erdogan et al. [2], is defined by the following complicated, 
but elementary, functions of k. 

hi = kP1 - 2vP4 - 2(1 - v), h2 = kP4,  h3 = kQ1 - 2~'Q4 + k ,  ha = kO4,  

P1 = {(K + 1)2(AD + B C )  + (K - 1)(K + 3 ) k D  - (K - 1 ) 2 B } / Z ,  

Q1 = -2k{(K + 1)(AD + B C )  + ( K -  1 ) k D  + (K - 1 ) B } / Z ,  

P4 = {D( A2 + B2 - 2 k A  - 3k 2) + k B ( K  - 2 - 2KC + (K + 2)(C 2 + D 2 ) ) } / Z ,  

Q4 ~- - 2 k { D (  A2 + B2 - k2) + k B ( - 1  + C 2 + D z ) } / Z ,  

Z : KD(A 2 + B 2 + 2 k A  + k 2) - k B ( 1  - 2C + C 2 + D2), 

C = {6(A + T)(A 2 + B 2) - (1 + ~)kZ(6A + "y) + y A ( A  + 7) - T B 2 } / Y ,  

D ~- { 6 B ( A  2 + B 2) + (1 + 6)kZ6B + 2 T A B  + T 2 B } / Y ,  

Y = k{62(A 2 + B 2) + 2 6 y A  + y2}, R 4 = (T2 + 4k2)2 + 16v,yZk2/(1 _ v) ,  

A = ½ { - T + V / ½ ( R 2 + T 2 + 4 k 2 ) }  and B = ½ V / ½ ( R  2 - y 2 - 4 k 2 ) .  

In these expressions, K = 3 - 4v ,  6 = 1/(1 - 2,,) and 7 is the parameter  (called /3 in [2]) 
occurring in (3.4). 

We require the behaviour of gj(k) for small and large values of k (we used the computer  
algebra system 'MAPLE' ) .  As k ~ 0,  we find that, with an error  of O(k4),  

gl = 5 k -  (16 /y)k  e+  (16/y2)k 3, 

g2 = -3k2  + (8/Y) k3, 

g3 = g2, 
g4 = 2k3. 

As k ~ m ,  we find that, with an error  of O ( k - ] ) ,  

gl = ( 2 - v ) h ,  

ge -- - A k - ( 1 - 2 v ) h  e, 
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g3 = g2, 
g4 -- hk  2 + (1 - 2v )h2k  - v(3  - 4v )h  3, 

whe re  h = 3,/(4(1 - v))  ; the  la t ter  resul ts  agree  with those  in [2]. No te  tha t  g2 ~ g3 ! 
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Appendix B 

In o rde r  to show tha t  D ( z ) ,  def ined by  (5.6), has just one  zero  in the  strip - 1  < o- < 0 ,  
consider  the  rec tangu la r  con tou r  C ,  with ver t ices  at + i R  and - 1  ± iR ( R > 0 ). Clearly, 
D(z) is analyt ic  within C ,  and  so the 'pr inciple  of  the a r g u m e n t '  gives tha t  D(z) has N 
zeros  within C ,  whe re  

27rN = increase  in a r g D ( z )  as z goes  once  a round  C .  

E l e m e n t a r y  cons idera t ion  of  D ( z ) ,  for  large R ,  shows tha t  R e D  changes  sign twice (near  
o- = - ½  ) whe rea s  I m D  changes  sign once  (at z = - 1  ); hence  N = 1.  As  the re  is only  one  
zero,  it mus t  be  real.  In fact,  the  exis tence of  one  real  roo t  is easily shown: no te  that ,  for  all 
a l lowable  mater ia l s  ( m  > 0 ,  - 1  < v, Vu < ½ ), D(0)  > 0 ,  D ( - 1 )  < 0 ,  D ' (0 )  = 0 and  D'(tr) 
changes  sign once  in the  in terval  - 1  < or < 0 .  
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